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ABSTRACT

In this paper, we use a Hamiltonian approach to derive the equations of motion for an object relative
to a circular or slightly elliptical reference orbit. By solving the Hamilton-Jacobi equation we develop
constants of the relative motion called epicyclic elements. A perturbation Hamiltonian is formulated
in order to derive variational equations for the “constants” via Hamilton’s equations. We use this
formalism to derive bounded, periodic orbits in the presence of various perturbations. In particular,
we show a simple no-drift condition that guarantees bounded orbits in the presence of J2 forces.
We also derive the relative motion deviations and boundedness conditions due to eccentricity of the
reference orbit and higher-order terms in the gravitational potential.

1. INTRODUCTION

This paper presents a new approach to modeling the motion of objects relative to a circular or
elliptic reference orbit and for finding bounded trajectories in the presence of perturbations. The
problem of bounded relative motion is becoming of increasing interest as future missions begin to
rely on multiple spacecraft in formation for carrying out their objectives. The most prominent
among these are the formation flying interferometers. For example, NASA expects to fly its second
Terrestrial Planet Finder mission, TPF-I, in 2019. This will consist of at least three satellites
forming a nulling interferometer to image extrasolar earthlike planets in the infra-red. While control
will certainly be needed to maintain the closed formations necessary for these missions, it is still
extremely beneficial to develop accurate models and bounded solutions to minimize the use of fuel.
In this paper, we present a novel approach using canonical perturbation theory for studying relative
motion trajectories and for finding simple conditions for periodic orbits.

Traditional approaches to relative motion have relied upon the second-order Clohessy-Wiltshire
(CW) equations to describe small deviations from a circular reference orbit [1]. These can easily be
solved and use the relative initial conditions as constants of the motion. Unfortunately, this is often
an inconvenient and difficult method for treating perturbations to the relative motion. Alternatively,
many researchers have turned to an orbital elements or inertial description of the relative motion
[2, 3, 4, 5]. This has the advantage that Lagrange’s planetary equations (LPEs) or Gauss’s variational
equations (GVEs) can be used to treat small perturbations; nevertheless, orbital elements are an
indirect representation of relative motion and the beauty and convenience of treating the motion
entirely in a Hill frame is lost.

In [6] we describe a new approach to treating relative motion that unifies these treatments.
We describe the motion in the rotating Hill frame via a low-order Hamiltionian and solve the
Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical
to the usual CW approach; here, though, rather than using initial conditions as our constants of the
motion, we have the canonical momenta and coordinates. This allows us to treat perturbations in an
identical manner as in the classical Delaunay formulation of the two-body problem. By treating the
perturbations or high-order terms as a perturbing Hamiltonian, we can find variational equations
for the new constants via Hamilton’s equations. We find that this can greatly simplify the search for
boundedness conditions and provides a compact and insightful description of the resulting motion.
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Figure 1. Relative motion rotating Euler-Hill reference frame

In the next section we briefly summarize the development of the H-J solution and variational
equations from [6]. We then follow with three perturbation examples. In Section 3 we use the
technique to solve for the effect of the the higher terms in the potential expansion and derive the
boundedness condition including second- and third-order terms. In Section 4 we summarize our
results from [6] for the J2 perturbation on a satellite formation. Finally, in Section 5 we use the
same approach to find the first-order variations due to a small eccentricity of the reference orbit.
We then show how these can be combined to formulate the net relative motion.

2. THE HAMILTON-JACOBI SOLUTION OF RELATIVE MOTION

For this study, we are considering the motion of a satellite in a Cartesian Euler-Hill frame relative to
a circular orbit as shown in Figure 1. Motion relative to orbits of small eccentricity will be treated
via perturbations in powers of e in Section 5. Traditionally, relative motion in this frame has been
modeled using the Clohessy-Wiltshire (CW) equations via a first-order, linear analysis:

ẍ − 2nẏ − 3n2x = Qx (1)

ÿ + 2nẋ = Qy (2)

z̈ + n2z = Qz (3)

where (Qx, Qy, Qz) represent small perturbing forces and n is the reference orbit rate.

In the absence of perturbing forces, it is well known that the solution to these equations consists
of an elliptical trajectory about the origin with a possible long term drift. The drift can be eliminated
by the no-drift constraint, ẏ + 2nx = 0.

In this work, we approach the problem slightly differently by first formulating the Lagrangian
of the motion in the rotating frame (where we have expanded the potential in terms of Legendre
polynomials),

L =
1

2

{

(ẋ − ny)2 + (ẏ + nx + na)2 + ż2
}

+n2a2
∞
∑

k=0

Pk(cos α)
(ρ

a

)k

− Up (4)

and Up is a perturbing potential. Our goal is to formulate a Hamiltonian for the entire system,
H : R

3×R
3 → R

1, that we can partition into a nominal Hamiltonian, H(0), with which we can solve
the Hamilton-Jacobi (H-J) equation, and a perturbing Hamiltonian, H(1),

H = H(0) + H(1) (5)

By solving the H-J equation on H(0), we find a set of canonical momenta and coordinates for which
H(0) is a constant. Thus, perturbations can be treated as causing first-order variations of these
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new coordinates via Hamilton’s equations on the perturbing Hamiltonian. This same procedure is
followed in the two-body problem to derive Delaunay variables and the corresponding variational
equations.

The first step is to drop the perturbing potentials (which include the higher-order terms in the
nominal potential), just as in the treatment leading to the Clohessy-Wiltshire equations for relative
motion. This is equivalent to only examining small deviations from the reference orbit. We do this
by expanding the potential term to second-order to find the low order Lagrangian,

L̄(0) =
1

2

(

ẋ2 + ẏ2 + ż2
)

+ ((x + 1)ẏ − yẋ) +
3

2
+

3

2
x2 − 1

2
z2 (6)

Where we have also normalized rates by n so that time is in units of radians, or the argument of lat-
itude, and we have normalized distances by the reference orbit semi-major axis, a. Not surprisingly,
applying the Euler-Lagrange equations to this Lagrangian results in the expected C-W equations,
Eqs. (1) - (3).

For brevity, we do not repeat the entire H-J solution procedure here. Details can be found in [6].
Using the Lagrangian in Eq. (6) we find the canonical momenta,

px =
∂L(0)

∂ẋ
= ẋ − y

py =
∂L(0)

∂ẏ
= ẏ + x + 1 (7)

pz =
∂L(0)

∂ż
= ż

and the corresponding unperturbed Hamiltonian,

H(0) =
1

2
(px + y)2 +

1

2
(py − x − 1)2 +

1

2
p2

z − 3

2
− 3

2
x2 +

1

2
z2 (8)

This Hamiltonian is used to solve the H-J equation, resulting in a new set of canonical momenta,
(α1, α2, α3), and canonical coordinates, (Q1, Q2, Q3),

α1 =
1

2
(px + y)2 + 2(py − x − 1)2 +

9

2
x2 + 6x(py − x − 1)

=
1

2

(

ẋ2 + (2ẏ + 3x)2
)

(9)

α2 =
1

2
p2

z +
1

2
z2 =

1

2
ż2 +

1

2
z2 (10)

α3 = py + x − 1 = ẏ + 2x (11)

Q1 = u − u0 + β1 = tan−1

(

x − 2α3
√

2α1 − 4α2
3 + 4α3x − x2

)

= − tan−1

(

3x + 2ẏ

ẋ

)

(12)

Q2 = u − u0 + β2 = tan−1

(

z√
2α2 − z2

)

= tan−1
(z

ż

)

(13)

Q3 = −3α3(u − u0) + β3 = y − 2
√

2α1 − 4α2
3 + 4α3x − x2

= −2ẋ + y (14)
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where (β1, β2, β3) are constants and the Hamiltonian in the new coordinates is,

H(0) = α1 + α2 (15)

In the absence of perturbations, these new coordinates are, of course, constant and given by the
Cartesian initial conditions via Eqs. (9) - (14). We call them “epicyclic elements” as they describe
epicycle-like motion about a reference circular orbit. These equations can then be solved for x, y,
and z to yield the cartesian generating solution in the Hill frame,

x(t) = 2α3 +
√

2α1 sin(Q1) = 2α3 +
√

2α1 sin(u − u0 + β1) (16)

y(t) = Q3 + 2
√

2α1 cos(Q1) = −3α3(u − u0) + β3 + 2
√

2α1 cos(u − u0 + β1) (17)

z(t) =
√

2α2 sin(Q2) =
√

2α2 sin(u − u0 + β2) (18)

It is also straightforward to find expressions for the cartesian rates and the canonical momenta in
terms of these new variables. Eqs. (16) - (17) are the same elliptic motion solution as one gets from
the C-W equations, except here written in terms of the new elements rather than Cartesian initial
conditions. The value of this approach is in the canonicity of these elements. Because they solve the
H-J equation, if we write the perturbing Hamiltonian in terms of them, we find that their variation
under perturbations is given by the first-order Hamilton’s equations,

α̇i = −∂H(1)

∂Qi
(19)

β̇i =
∂H(1)

∂αi
(20)

Q̇i =
∂H(0)

∂αi
+ β̇i (21)

Before proceeding with our treatment of perturbations, there is one more helpful simplification.
The epicyclic elements above parameterize the motion in terms of amplitude and phase. Also, as
the α’s enter in as square roots, the variational equations can become quite complicated (and often
singular). It is therefore often more convenient to introduce an alternative, amplitude like set via
the canonical transformation,

a1 =
√

2α1 cosβ1 (22)

b1 =
√

2α1 sinβ1 (23)

a2 =
√

2α2 cosβ2 (24)

b2 =
√

2α2 sinβ2 (25)

a3 = α3 (26)

b3 = β3 (27)

It can be shown that this set arises from two symplectic transformations from (αi, Qi). Thus,
the variations of these new variables are also given by Hamilton’s equations on the perturbing
Hamiltonian. We call these new elements contact epicyclic elements. The new Cartesian position
equations in terms of the contact elements become,

x(t) = 2a3 + a1 sin(u − u0) + b1 cos(u − u0) (28)

y(t) = b3 − a3(u − u0) − 2b1 sin(u − u0) + 2a1 cos(u − u0) (29)

z(t) = b2 cos(u − u0) + a2 sin(u − u0) (30)
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3. HIGHER-ORDER NONLINEAR PERTURBATIONS

We treat the effect of the neglected higher-order terms in the expanded potential as our first per-
turbation. A number of researcher have examined these higher-order terms in recent years in the
context of the CW equations [7, 8, 9]. In fact, Richardson [9] presents an approximate solution to
the Cartesian relative motion up to third-order using a Poincarè-Lindstedt procedure. Here, we use
a very similar procedure but on the variations of the epicyclic elements. The first-order variational
equations we find are much simpler to solve, present added insight, and are more easily combined
with other perturbations. Our final result agrees well with [9], verifying our method.

The variational equations for the epicyclic elements due to the higher-order potential terms are
quite straightforward to find. The perturbing Hamiltonian is simply the higher-order Legendre
polynomials in the expansion of the potential,

H(1) = x3 − 3

2
x(y2 + z2) − x4 + 3x2(y2 + z2) − 3

4
y2z2 − 3

8
(y4 + z4) (31)

where we have included here the third and fourth order terms. The variational equations are found
by substituting for (x, y, z) from Eqs. (28)-(30) and using Hamilton’s equations on the elements.
For brevity, we present only the second-order variational equations,

ȧ1 =
−3

8













−4q2
3 cos(u) − 16q3 cos(2u)a1 − 2 cos(u)a1

2 − 14 cos(3u)a1
2 − cos(u)a2

2

+ cos(3u)a2
2 + 32q3 sin(u)a3 + 48 sin(2u)a1a3 + 32 cos(u)a3

2

+16q3 sin(2u)b1 − 4 sin(u)a1b1 + 28 sin(3u)a1b1 − 16a3b1 + 48 cos(2u)a3b1

−6 cos(u)b1
2 + 14 cos(3u)b1

2 − 2 sin(u)a2b2 − 2 sin(3u)a2b2

−3 cos(u)b2
2 − cos(3u)b2

2













(32)

ȧ2 =
3

4





cos(u)a1a2 − cos(3u)a1a2 + 4 sin(2u)a2a3 + sin(u)a2b1 + sin(3u)a2b1

+ sin(u)a1b2 + sin(3u)a1b2 + 4a3b2 + 4 cos(2u)a3b2 + 3 cos(u)b1b2

+ cos(3u)b1b2



 (33)

ȧ3 = 3

(

q3 sin(u)a1 + sin(2u)a1
2 + 2q3a3 + 4 cos(u)a1a3 + q3 cos(u)b1

+2 cos(2u)a1b1 − 4 sin(u)a3b1 − sin(2u)b1
2

)

(34)

ḃ1 =
−3

8













4q2
3 sin(u) + 16q3 sin(2u)a1 + 6 sin(u)a1

2 + 14 sin(3u)a1
2 + 3 sin(u)a2

2

− sin(3u)a2
2 + 32q3 cos(u)a3 + 16a1a3 + 48 cos(2u)a1a3 − 32 sin(u)a3

2

+16q3 cos(2u)b1 + 4 cos(u)a1b1 + 28 cos(3u)a1b1 − 48 sin(2u)a3b1

+2 sin(u)b1
2 − 14 sin(3u)b1

2 + 2 cos(u)a2b2 − 2 cos(3u)a2b2

+ sin(u)b2
2 + sin(3u)b2

2













(35)

ḃ2 =
3

4





−3 sin(u)a1a2 + sin(3u)a1a2 − 4a2a3 + y4 cos(2u)a2a3 − cos(u)a2b1

+ cos(3u)a2b1 − cos(u)a1b2 + cos(3u)a1b2 − 4 sin(2u)a3b2 − sin(u)b1b2

− sin(3u)b1b2



 (36)

q̇3 =
−3

2





2q2
3 + 2a1

2 + a2
2 + 2a3 − 16 sin(u)a1a3 − 16a3

2 − 8q3 sin(u)b1

−12 sin(2u)a1b1 + 2b1
2 + 8 cos(u) (q3a1 − 2a3b1) + 2 sin(2u)a2b2

+b2
2 + cos(2u)(2u)(3u)

(

6a1
2 − a2

2 − 6b1
2 + b2

2
)



 (37)

Recall that for the first-order solution, the condition for a bounded relative motion was a3 = 0 =
ẏ + 2x. Here, where we include the effect of the higher-order terms, we can find a new condition
for boundedness that is second-and third-order in the initial conditions. We do this by solving the
variational equations above using a Poincarè-Lindstedt procedure. We add to the epicyclic elements
small, time varying perturbations that solve Eqs. (32) - (37). These small, time varying terms are
going to be second-and third-order in the initial conditions. The second-order terms, for example,
are found by plugging in the first-order, constant values (zero for a3) into Eqs. (32) - (37) and
integrating by quadrature. Doing so we find that all of the epicyclic elements are periodic except for
q3. However, by setting the non-periodic part of q3 equal to zero we find a new condition on a3(0)
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to ensure bounded relative motion,

a3(0) = −5

2
a2
1(0) − 1

2
(a2

2(0) − b2
1(0) + b2

2(0)) − 3a1(0)b3(0) − b2
3(0) (38)

Our boundedness condition now consists of second-order powers of the initial conditions. The
resulting solution for (a1(u), b1(u), a2(u), b2(u), a3(u), q3(u)) is substituted back into the Cartesian
Eqs. (28) - (30) to find the complete second-order solution. We follow the same procedure for the
third-order perturbation term, though the variational equations are too cumbersome to reproduce
here. The boundedness condition then becomes,

a3(0) = −5

2
a2
1(0) − 1

2
(a2

2(0) − b2
1(0) + b2

2(0)) − 3a1(0)b3(0) − b2
3(0)

−3

2
(a2

1(0)b1(0) + a2
2(0)b1(0)) +

1

2
b3
1(0) (39)

Again, the full third-order solution can then be found via substitution. Figure 2 shows a pseudo-
elliptical relative orbit in the Hill frame using the above initial boundedness condition. The param-
eters and initial conditions were chosen to compare to the similar result in [9]. The reference orbit
has an altitude of 1700 km and the relative motion extends 20 km in y (and 40 km in x) and roughly
5 km out-of-plane in z. The drift of this orbit is roughly 1 cm per orbit, compared to hundreds of
meters per orbit using only the first-order condition (the CW solution). Fig. 3 shows the difference
between this full, nonlinear simulation and the third-order variational solution.

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
4

−3
−2

−1
0

1
2

3

x 10
4

−6000

−4000

−2000

0

2000

4000

6000

x(m)
y(m)

Figure 2. Exact nonlinear simulation of 3-dimensional relative orbit using the third-order boundedness
condition. Total drift of the trajectory is less than 1 cm per orbit.

4. J2 PERTURBATION

In Ref. [6] we go into some detail on using this approach to studying the perturbation of a relative
motion trajectory due to the J2 oblateness. We therefore only summarize the results here. For
illustration, it is simpler to begin with the restricted case of a circular, equatorial reference orbit
and follow the perturbation analysis as above. The perturbing Hamiltonian is,

H(1) =
n2J2R

2
⊕(2z2 − 1 − 2x − x2 − y2)

2a2(1 + 2x + x2 + y2 + z2)(5/2)
(40)
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Figure 3. Difference between exact nonlinear simulation and the third-order variational solution.

where we have again normalized distances by the reference orbit radius, a. This is expanded to
second-order and (x, y, z) is replaced by their time varying solution in terms of the epicyclic elements.
Hamilton’s equations are then used to find the variational equations for the elements, which, in terms
of the contact elements, are,

ȧ1 =
3

2
J2

(

R⊕

a

)2




− cos(u − u0) + 4 sin(2(u − u0))a1

+4 cos(2(u − u0))b1 + 2 sin(u − u0)q3

+8 cos(u − u0)a3



 (41)

ḃ1 =
3

2
J2

(

R⊕

a

)2




sin(u − u0) + 4 cos(2(u − u0))a1

−4 sin(2(u − u0))b1 + 2 cos(u − u0)q3

−8 sin(u − u0)a3



 (42)

ȧ2 = −9

4
J2

(

R⊕

a

)2

((1 + cos(2(u − u0)))b2 − sin(2(u − u0))a2) (43)

ḃ2 =
9

4
J2

(

R⊕

a

)2

(sin(2(u − u0))b2 − (1 − cos(2(u − u0)))a2) (44)

ȧ3 = −3

2
J2

(

R⊕

a

)2

(q3 + 2 cos(u − u0)a1 − 2 sin(u − u0)b1) (45)

q̇3 = −3a3 + 3J2

(

R⊕

a

)2(
1 − 8a3 − 4 sin(u − u0)a1

−4 cos(u − u0)b1

)

(46)
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Since we are performing our analysis to first-order in J2 only and we assume small relative motion,
these can be simplified in a low-order analysis to,

ȧ1 = −3

2
J2

(

R⊕

a

)2

cos(u − u0) (47)

ḃ1 =
3

2
J2

(

R⊕

a

)2

sin(u − u0) (48)

ȧ2 = 0 (49)

ḃ2 = 0 (50)

ȧ3 = 0 (51)

q̇3 = −3a3 + 3J2

(

R⊕

a

)2

(52)

These equations can be easily solved by quadrature,

a1 = a1(0) − 3

2
J2

(

R⊕

a

)2

sin(u − u0) (53)

b1 = b1(0) − 3

2
J2

(

R⊕

a

)2

cos(u − u0) (54)

a2 = a2(0) (55)

b2 = b2(0) (56)

a3 = a3(0) (57)

q3 = q3(0) + 3(J2

(

R⊕

a

)2

− a3(0))(u − u0) (58)

In order to eliminate the along-track drift, we set a3(0) = J2

(

R⊕

a

)2

. If we also simplify by consider-

ing only in-plane motion (by setting a2(0) = b2(0) = 0), then inserting these solutions back into Eqs.

(28) - (30) shows that one equilibrium solution consists of a constant radial offset of x = J2

2

(

R⊕

a

)2

.

This is the same as the well known result for the needed constant radial offset to establish a cir-
cular, equatorial orbit in the presence of J2 (most simply found by equating the gravitational and
centrigual forces). This is a convincing validation of the approach.

The true power of the technique is displayed for the general J2 perturbation problem. Here
we find a very simple periodic relative motion condition for any reference orbit at all inclinations.
However, to do so we must introduce one complication. We know from the perturbed two-body
problem that any satellite orbit will have a long term, secular drift in the node angle and argument
of perigee induced by oblateness. Thus, it is clearly impossible, using any technique, to find a
boundedness condition for motion relative to a fixed reference orbit (and, of course, the drift will
quickly invalidate the small motion assumption). One approach is to treat the perturbation inertially.
Schaub and Alfriend [10, 8], for example, realizing this, derived general J2–invariant (and almost
invariant) satellite formations by matching the drifts among the satellites. In other words, the
satellite orbits still drift relative to the usual Hill reference frame, but they drift in such a way that
the formation remains bounded. Unfortunately, this loses the advantage provided by the relative
frame description and tends to have singularity problems.

To solve the problem in our canonical formalism, we return to the original solution of the H-J
equation and replace the fixed, Hill-like reference orbit with a circular orbit that also rotates at the
mean J2 induced drift rate. Thus, the new reference frame, rather than rotating only about the
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z-axis at the nominal orbit rate, now has the more complicated angular velocity,

I
ω

R =





Ω̇ sin i sinu

Ω̇ sin i cosu

Ω̇ cos i + u̇





I

(59)

where u is the argument of latitude, u̇ = n + δn is the modified orbit rate including the J2 pertur-
bation, and n =

√

µ/ā3, ā being the mean semi-major axis. The equations for the drift rates are
somewhat subtle, as the usual expressions are written in terms of the initial or mean semi-major
axis of the osculating orbit (see, e.g., [11] or [13]). Here, however, we select a circular reference orbit
with the radius, r̄, equivalent to the mean radius of the J2 perturbed orbit [12],

r̄ = ā +
3

4
J2

(

R⊕

ā

)2

(3 sin2 i − 2) (60)

Since we are free to select the reference orbit, this equation is solved for ā and then used to find the
mean rates of change of the node angle and argument of latitude [12, 13] for the arbitrary, circular
reference orbit,

Ω̇ = −3

2
n̄J2

(

R⊕

r̄

)2

cos i (61)

δn =
3

4
n̄J2

(

R⊕

r̄

)2 (

3 − 7

2
sin2 i

)

(62)

where n̄ =
√

µ/r̄3. Note also that in Eq. (62) we have included in u̇ both the effect of the rate
of change of true anomaly and of the argument of perigee as the reference orbit is circular (i.e.,
u̇ = Ṁ + ω̇).

This angular velocity is then used to find the inertial velocity of the satellite and then kinetic
and potential energies. This results in the new, normalized Lagrangian,

L̄ =
1

2
|v(0)|2 + v

(0) · v(1) +
1

2
|v(1)|2

+

∞
∑

k=0

Pk(cosα)ρk − Ūzonal (63)

where v
(0) is the part of the normalized velocity in the relative motion frame independent of J2 (and

the same as the velocity in the original problem),

v
(0) =





ẋ − y
ẏ + (x + 1)

ż



 (64)

and v
(1) is the small remaining term of order J2,

v
(1) =







v
(1)
x

v
(1)
y

v
(1)
z






=







˙̄Ωsicuz − ( ˙̄Ωci − δ̄n)y

( ˙̄Ωci − δ̄n)(x + 1) − ˙̄Ωsisuz
˙̄Ωsisuy − ˙̄Ωsicu(x + 1)






(65)

where ˙̄Ω = Ω̇/n̄ and δ̄n = δn/n̄.

As we did before, we can expand this Lagrangian and keep only the low order terms (including
terms to first-order only in J2). This allows us to drop the second-order term, 1

2 |v(1)|2, and rewrite
the Lagrangian,

L̄ = L̄(0) + v
(0) · v(1) − Ūzonal (66)
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where we are ignoring the second-order terms of the previous section. It is interesting to note that
this Lagrangian could be used in the Euler-Lagrange equations to find second-order equations of
motion in this new rotating and drifting frame, which may have some usefulness for control design.

With this Lagrangian, we compute the new canonical momenta,

px =
∂L̄
∂ẋ

= ẋ − y + v(1)
x

py =
∂L̄
∂ẏ

= ẏ + x + 1 + v(1)
y (67)

pz =
∂L̄
∂ż

= ż + v(1)
z

and, again using the Legendre transformation, H =
∑

q̇ipi − L, we find the new Hamiltonian,

H =
1

2
(px + y − v(1)

x )2 +
1

2
(py − (x + 1) − v(1)

y )2 +
1

2
(pz − vz)

2

−3

2
− 3

2
x2 +

1

2
z2 + yv(1)

x − (x + 1)v(1)
y + Ūzonal (68)

Multiplying out the terms in Eq. (68) results in the same low order Hamiltonian, H(0), as the
original problem and the perturbing Hamiltonian,

H(1) = −pxv(1)
x − pyv

(1)
y − pzv

(1)
z + Ūzonal (69)

where we have again dropped terms of second-order (or higher) in J2. The solution to the H-J
equation is the same as before, with the Cartesian relative motion given by Eqs. (28) - (30) in
terms of the contact epicyclic elements, only now the motion is referred to the rotating and drifting
reference orbit. However, due to the modified definition of the canonical momenta, the cartesian
rates are slightly different,

ẋ(u) = a1 cos(u − u0) − b1 sin(u − u0) − v(1)
x (70)

ẏ(u) = −3α3 − 2a1 sin(u − u0) − 2b1 cos(u − u0) − v(1)
y (71)

ż(u) = a2 cos(u − u0) − b2 sin(u − u0) − v(1)
z (72)

and the relationship between the elements and Cartesian initial conditions are likewise modified.

This formalism results in a rather unique form for the perturbing Hamiltonian in Eq. (69); that
is, H(1) depends upon the canonical momenta and velocities. It is shown in [14, 15] that for problems
where the perturbing Hamiltonian is velocity dependent, the resulting instantaneous trajectory (Eqs.
(28)-(30)) is not osculating. While the physical trajectory we find will be exact (and quite useful),
we must therefore keep in mind that it is not formed from a series of tangent ellipses as in the other
perturbation cases we are examining or as in the Delaunay formulation of the two-body problem.
An alternative approach is to resolve the H-J equation for the new canonical momenta; this is a
formidable task, however, and we defer to future work.

As before, we form the perturbing Hamiltonian and use Hamilton’s equations to find the varia-
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tional equations, which, to first-order in J2 and the contact elements, are,

ȧ1 = − 3

32
J2

(

R⊕

r̄

)2













cos(2i − u − u0) − 7 cos(3u − u0 + 2i)
+14 cos(3u − u0) + 6 cos(u − u0 − 2i)
+4 cos(u − u0) − 7 cos(3u − u0 − 2i)
+6 cos(u − u0 + 2i) − 2 cos(u + u0)
+ cos(u + u0 + 2i)













(73)

ḃ1 =
3

32
J2

(

R⊕

r̄

)2













− sin(u + u0 + 2i) − sin(u + u0 − 2i)
+14 sin(3u − u0) − 7 sin(3u − u0 + 2i)
−7 sin(3u − u0 − 2i)
+6 sin(u − u0 − 2i) + 6 sin(u − u0 + 2i)
+2 sin(u + u0) + 4 sin(u − u0)













(74)

ȧ2 =
3

8
J2

(

R⊕

r̄

)2

(cos(2u − u0 + 2i) − cos(2u − u0 − 2i)) (75)

ḃ2 = −3

8
J2

(

R⊕

r̄

)2

(sin(2u − u0 + 2i) − sin(2u − u0 − 2i)) (76)

ȧ3 = −3

8
J2

(

R⊕

r̄

)2

(sin(2u − 2i) + sin(2u + 2i) − 2 sin(2u)) (77)

q̇3 = −3a3 −
9

16
J2

(

R⊕

r̄

)2(
4 cos(2u) − 2 cos(2u − 2i)
−2 cos(2u + 2i) + 3 cos(2i) + 1

)

(78)

As in the equatorial case, these equations can easily be solved by quadrature. We again find a
secular drift term proportional to a3(0). However, because of our careful selection of the drifting
reference orbit, we are able to find a straightforward boundedness condition,

a3(u0) =
3

16
J2

(

R⊕

r̄

)2 [
1 + 3 cos(2i) + 2 cos(2u0)
− cos(2i − 2u0) − cos(2i + 2u0)

]

(79)

Substituting this condition into the solution for the elements and then into the Cartesian gener-
ating equations result in the periodic equations for the relative motion trajectory,

x(u) = a1(u0) sin(u − u0) + b1(u0) cos(u − u0)

+
1

32
J2

(

R⊕

r̄

)2

















4 cos(2u) − 2 cos(2u + 2i) − 2 cos(2u − 2i)
+12 cos(u − u0) + 6 cos(u + u0)
+18 cos(u − u0 − 2i) + 18 cos(u − u0 + 2i)
−3 cos(u + u0 − 2i)− 3 cos(u + u0 + 2i)
+14 cos(u − 3u0)
−7 cos(u − 3u0 + 2i) − 7 cos(u − 3u0 − 3i)

















(80)

y(u) = q3(u0) + 2a1(u0) cos(u − u0) − 2b1(u0) sin(u − u0)

+
1

32
J2

(

R⊕

r̄

)2





















2 sin(2u) − sin(2u − 2i) − sin(2u + 2i)
−24 sin(u − u0) − 12 sin(u + u0) − 18 sin(2u0)
+9 sin(2u0 + 2i) + 9 sin(2u0 − 2i)
−36 sin(u − u0 − 2i) − 36 sin(u − u0 + 2i)
+6 sin(u + u0 − 2i) + 6 sin(u + u0 + 2i)
−28 sin(u − 3u0)
+14 sin(u − 3u0 + 2i) + 14 sin(u − 3u0 − 2i)





















(81)

z(u) = a2(u0) sin(u − u0) + b2(u0) cos(u − u0)

+
3

16
J2

(

R⊕

r̄

)2(
cos(u + 2i) − cos(u − 2i)
+ cos(u − 2u0 + 2i) − cos(u − 2u0 − 2i)

)

(82)
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Once again, these can be verified by examining the constant offset at i = 0 and we again find the
correct result.

In [6] we present simulations of periodic relative motion trajectories for three different inclina-
tions. For brevity, we present only one of those here. For these simulations, we selected initial
conditions on the contact epicyclic elements (with the boundedness condition on a3(0) from Eq.
(79)) and then found the cartesian initial conditions in the rotating and drifting frame from,

x(u0) = 2a3(u0) + b1(u0) (83)

y(u0) = q3(u0) + 2a1(u0) (84)

z(u0) = b2(u0) (85)

and the initial rates from Eqs. (70) - (72),

ẋ(u0) = a1(u0) − v(1)
x (u0) (86)

ẏ(u0) = −3a3(u0) − 2b1(u0) − v(1)
y (u0) (87)

ż(u0) = a2(u0) − v(1)
z (u0) (88)

These initial conditions were then rotated and translated into an inertial frame for a full nonlinear
simulation. The circular reference orbit selected had an altitude of 750 km. All the initial conditions
on the contact elements were set to zero except for a3(0).

Figure 4 shows an example of a bounded relative motion over 5 orbits including J2 effects relative
to a sun-synchronous reference orbit. Also in this figure is the difference between the full nonlinear
simulation and the relative motion from Eqs. (80)-(82). ‡ The boundedness condition works quite
well, resulting in an average drift of roughly 20 m/orbit. However, this may still be considered
too large (the residual resulting from neglected terms of O(J2

2 )). Remarkably, this drift can be
fairly easily reduced via a simple iteration of the nonlinear initial conditions. By using the no-drift
condition as a starting point, we find a slight modification of the relative motion initial in-track
velocity that significantly reduces the in-track drift in only 5 iterations. By changing the initial in-
track velocity by just less than 0.006 m/s we can reduce the orbit drift to less than 5 meters/orbit.
Such an orbit is shown in Fig. 5.

5. ECCENTRIC REFERENCE ORBITS

For our last example, we find bounded relative motion trajectories relative to a slightly elliptical
reference orbit. A number of researchers have looked at the problem of relative motion relative to
elliptical orbits [16, 17]. Most have have approached the problem by solving for the motion in terms
of true anomaly rather than time. Here, we treat the eccentricity as a small perturbation and solve
for the deviation of our 2:1 elliptical solution due to small eccentricity. We note that in [18] we used
the same approach to study elliptic orbit perturbations on relative motion. However, there were a
number of errors in that work, particularly in the treatment of averaging; what we present below
should be referenced instead.

For the eccentric orbit problem, we use the same reference frame as in Fig. 1 but here rotating at
the time varying rate, θ̇(θ), where θ is the true anomaly. Letting rc(θ) = |r1|, the velocity becomes,

v =





ẋ + ṙc(θ) − θ̇y

ẏ + θ̇(x + rc(θ))
ż



 (89)

‡This figure shows the geometric difference between the two orbits. Plots of the difference in the Cartesian
components show a large, and growing, oscillation due a slight difference in the rates and thus a growing
offset in phasing. See [6] for details.
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Figure 4. Left Nonlinear simulation of bounded relative motion trajectory in a sun-synchronous reference
orbit. Right A comparison of the relative displacement between the linearized trajectory and that from a
full, inertial, nonlinear simulation over 5 orbits for a Sun-Synchronous reference orbit.
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Figure 5. Nonlinear simulation of bounded, minimal drift relative motion trajectory in a sun-synchronous
reference orbit.

As before, we can use this velocity in the kinetic energy to find the normalized, perturbed
Lagrangian,

L =
1

2
{(ẋ + ṙc − θ̇ y)2 + (ẏ + θ̇(x + rc))

2 + ż2} +
1

rc
− x

r2
c

+
1

2r3
c

(2x2 − y2 − z2) (90)

where again we have included only the low-order terms in the potential. As in the J2 problem, we
find new canonical momenta,

px = ∂L
∂ẋ = ẋ + ṙc(θ) − yθ̇

py = ∂L
∂ẏ = ẏ + xθ̇ + rc(θ)θ̇

pz = ∂L
∂ż = ż

(91)

and the resulting normalized Hamiltonian,

H =
1

2
(p2

x + p2
y + p2

z) + px(−ṙc + yθ̇) − py(rc + x)θ̇ − 1

rc
+

x

r2
c

+
1

2r3
c

(−2x2 + y2 + z2) (92)

Note that θ and rc are not independent variables, but rather predetermined functions of time and
initial conditions.
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The Hamilton-Jacobi equation for this system is unsolvable. However, when the eccentricity is
small, the eccentric Hamiltonian approaches the circular Hamiltonian. As a result, we can conceive
of the eccentric motion as a perturbation of the motion relative to a circular orbit of the same period.
This allows us to use the same formalism as in our other examples. The nominal motion is given
as the same solution as before (Eqs. (28) - (30)). The effect of eccentricity is then found via the
variations due to the perturbing Hamiltonian, H(1),

H(1) = H − H(0)

= 1 + py − 1

rc
− x + pyx +

x

r2
c

+ x2 − x2

r3
c

− pxy (93)

−y2

2
+

y2

2rc
− z2

2
+

z2

2rc
− pxṙc − (py (rc + x) − pxy) θ̇

As in the J2 case, this Hamiltonian is velocity dependent; thus, the instantaneous trajectories are
again not osculating to the true trajectory.

By again substituting for (x, y, z, px, py, pz) and using Hamilton’s equations, it is possible to find
the variation equations. However, our aim is to find the trajectory evolution of the system across
time, requiring us to find the time dependence of rc(θ(t)) and θ(t),

rc = 1 − e cosE (94)

tan(
θ

2
) =

√

1 + e

1 − e
tan(

E

2
) (95)

where E, the eccentric anomaly, is obtained from Kepler’s Equation,

M = n(t − τ) = E − e sinE (96)

Since Kepler’s equation cannot be solved explicitly for time, we adopt the Fourier-Bessel series
solution from [11] and express rc and θ in terms of eccentricity and time as follows,

θ = M + 2

∞
∑

k=1

1

k





∞
∑

n=−∞

Jn(−ke)

(

1 −
√

1 − e2

e

)|k+n|


 sin(kM) (97)

rc = 1 +
e2

2
− 2e

∞
∑

k=1

1

k2

dJk(ke)

de
sin(kM) (98)

To find an expression for the variation of parameters caused by the eccentric reference orbit, we
substitute for rc and θ from Eqs. (97) and (98) in the expression for H(1) in Eq. (93) and expand
up to second-order in e,

H(1) =
e

2

[(

−2 + 4x − 6x2 − 2py (1 + 2x) + 4pxy + 3y2 + 3z2
)

cos (M) − 2px sin (M)
]

+
e2

4





2py + 2x − 6x2 + 3y2 + 3z2+
(

−4 + 10x − 2py (2 + 5x) + 10pxy − 18x2 + 9y2 + 9z2
)

cos (2M)
−4px sin (2M)



 (99)

+O
(

e3
)

Using the usual series of transformations to change from (x, y, z, px, py, pz) to (a1, a2, a3, b1, b2, b3)
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and applying Hamilton’s equations results in the variational equations to first-order in e,

ȧ1 = −e cos(2M − M0) (100)

ȧ2 = 0 (101)

ȧ3 = −e sin(M) (102)

ḃ1 = e sin(2M − M0) (103)

ḃ2 = 0 (104)

q̇3 = −3a3 + e cos(M) (105)

These equations are easily solved by quadrature to yield,

a1 = a1(0) +
e

2
(− sin(2M − M0) + sin(M0)) (106)

a2 = a2(0) (107)

a3 = a3(0) + e(cos(M) − cos(M0)) (108)

b1 = b1(0) +
e

2
(− cos(2M − M0) + cos(M0)) (109)

b2 = b2(0) (110)

q3 = b3(0) + (M − M0)(−3a30 + 3e cos(M0)) + e(−2 sin(M) + 2 cos(M0)) (111)

The boundedness condition in this case is that a3(0) = e cos(M0). Relative motion is extremely
sensitive to very slight eccentricities of the reference orbit. Using only the CW equations with an
eccentricity of only 0.001 results in a drift of many hundreds of meters per orbit. This first-order
condition alone makes a great improvement, but the drift can still be many tens of meters per
orbit. It is necessary, and straightforward, to include higher-order eccentricity terms. However,
the resulting perturbations become of the same order as the higher-order nonlinear effects and thus
cannot be considered separately. We present this combined effect in the next section.

6. COMBINED PERTURBATIONS

Because each of these perturbations appear as an added term in the Hamiltonian, the combined
effects are found by simply summing the variations. As mentioned above, when going to higher-
order in e, for example, the variations must be combined with the higher-order nonlinearities as
the errors are of the same order for reasonably sized relative trajectories. The variational equations
that result are too long to present here, but the boundedness condition for the third-order combined
effects becomes,

a3(0) = e cos(M0) +
e2

8

(

−2 − 20ã2
1(0) − 4ã2

2(0) + 4b̃2
1(0) − 4b̃2

2(0)

−24ã1(0)b̃3(0) − 8b̃2
3(0) + 8b̃1(0) cos(M0) + 6 cos(2M0)

)

+
e3

4









b̃1(0) − 6ã2
1(0)b̃1(0) − 6ã2

2(0)b̃1(0) + 2b̃3
1(0) − 12ã1(0)b̃1(0)b̃3(0)

−6b̃1(0)b̃2
3(0) − cos(M0) − 6ã2

1(0) cos(M0) − 6ã2
2(0) cos(M0)

+6b̃2
1(0) cos(M0) − 12ã1(0)b̃3(0) cos(M0) − 6b̃2

3(0) cos(M0)

+5b̃1(0) cos(2M0) + 3 cos(3M0)









(112)

where ãi(0) = ai(0)/e and b̃i(0) = bi(0)/e.

Figure 6 shows a nonlinear simulation of a 3-dimensional relative motion trajectory about a
reference orbit of eccentricity e = 0.001 and altitude 1700 km. The above combined boundedness
condition was used, resulting in an overall drift of 1 to 2 mm/orbit. Figure 7 shows the difference
between the nonlinear simulation and the combined third-order variational solution.

We can also combine, for example, the first-order eccentricity and J2 perturbations to find the
effect of oblateness on an eccentric reference orbit. The boundedness condition is simply the sum of
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Figure 6. Exact nonlinear simulation of 3-dimensional relative orbit using the third-order boundedness
condition on eccentricity and nonlinearity. Total drift of the trajectory is less than 1 cm per orbit.

Eq. (79) with the first-order eccentricity perturbation, e cos(M0). While this works for very small
eccentricity, it is not as effective for the eccentricities we are examining here. This is because the
relative orbit drift rate is extremely sensitive to e (as we saw above) and higher-order corrections
are needed. A proper combination, therefore, would have to include the O(J2

2 ) terms as well. We
postpone that to future work.

7. CONCLUSIONS AND FUTURE WORK

In this paper we summarized a new framework for modeling relative motion about circular and
slightly eccentric reference orbits. We reformulate the well known 2:1 elliptical solution of the CW
equations into a form dependent upon six canonical constants of the motion that are easily related to
the Cartesian initial conditions in the rotating the frame. We then use canonical perturbation theory
to find variational equations for these elements, which we termed “epicyclic”, in direct analogy to
the variation of the orbital elements. Not only does this approach provide straightforward, first-
order differential equations of variation, but the description of the motion remains entirely in the
relative motion frame, where most measurements are taken and where trajectory specification is most
natural. In this paper we demonstrated the technique by finding conditions for bounded, periodic
motion in the presence of higher-order nonlinearities, J2 induced perturbations, and slight ellipticity
of the reference orbit. In fact, we were able to find conditions for periodicity up to third-order in
the relative positions and the eccentricity. We were also able to find a general expression for J2

invariant orbits at any inclination and altitude.

There is much that can still be done to extend this methodology. In particular, we are interested
in pursuing the combined effects including terms of O(J2

2 ). We also intend to explore control
techniques incorporating a control potential. Finally, we believe this approach can be fruitfully
applied to motion about the co-linear Lagrange points in the circular restricted three-body problem.
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